
Evading Userland API Hooking, Again:
Novel Attacks and a Principled Defense Method

Cristian Assaiante[0000−0001−7705−0434], Simone Nicchi[0000−0002−0831−8211],
Daniele Cono D’Elia[0000−0003−4358−976X], Leonardo Querzoni[0000−0002−8711−4216]

Sapienza, University of Rome
{assaiante,delia,querzoni}@diag.uniroma1.it ; simone.nicchi@gmail.com

Abstract. Monitoring how a program utilizes userland APIs is behind much
dependability and security research. To intercept and study their invocations,
the established practice targets the prologue of API implementations for insert-
ing hooks. This paper questions the validity of this design for security uses by
examining completeness and correctness attacks to it. We first show how eva-
sions that jump across the hook instrumentation are practical and can reach
places much deeper than those we currently find in executables in the wild.
Next, we propose and demonstrate TOCTTOU attacks that lead monitoring
systems to observe false indicators for the argument values that a program
uses for API calls. To mitigate both threats, we design a static analysis to
identify vantage points for effective hook placement in API code, supporting
both reliable call recording and accurate argument extraction. We use this
analysis to implement an open-source prototype API monitor, Toxotidae,
that we evaluate against adversarial and benign executables for Windows.

1 Introduction
Programmers largely resort to userland Application Programming Interfaces (APIs) to
carry heterogeneous tasks such as file and string manipulation, process management,
network communication, and many others. For this reason, monitoring what APIs
a program invokes represents a common strategy in much dependability and security
research to study the externally observable behavior of a program [12]. This practice is
also known colloquially as “API hooking” due to the probes (hooks) that a monitoring
system inserts in the execution runtime to intercept API calls. This paper focuses on
Windows programs accessing APIs from userland libraries on x86/x64 architectures,
but the general concepts we present in it may be relevant for other platforms, too.

As typically with dynamic analysis endeavors, adversarial programs may attempt
to resist monitoring attempts by employing API call obfuscation techniques [19, 12].
Some research has explored defensive methods that increase the robustness of the mon-
itoring through transparent instrumentation [12] or taint tracking [19]. Nonetheless, an
enduring weakness that we find in current API monitoring embodiments [31, 27, 28, 12,
16] is that they assume API calls to follow the calling convention of the target platform.

As a result, they record API identity and input arguments once execution reaches
an API prologue, and output arguments and return value upon returning to the
caller. However, as we show in this paper, both the completeness and the correctness
of the tracing are affected if adversarial code invokes APIs in unexpected ways.

2 C. Assaiante et al.

Completeness attacks aim to hide calls from monitoring systems. Prior research [19]
describes stolen code attacks where an adversary emulates instructions from the API
prologue and then jumps into API code with a function-boundary unaligned control
transfer. While currently known stolen attacks are limited to a few instructions, in
this paper we generalize them to much deeper points with modest effort.

Correctness attacks aim to provide fake indicators to monitoring systems and,
to the best of our knowledge, are unexplored for userland malware. In this paper, we
propose and demonstrate the feasibility of a time-of-check to time-of-use (TOCTTOU)
attack on userland Windows APIs, exhibiting benign argument values upon entering
the API and replacing them with rogue ones before API code uses them.

To explore the potential extent of both attacks and counter them, we propose a
static program analysis technique that tracks how argument values flow through the
storage locations in use to API code. Our goal is to intercept call arguments right
before API code uses them: this information can guide us in inserting deep hooks in
a principled way that effectively counters both types of attacks.

We extensively evaluate the attacks and the proposed defense on popular Win-
dows APIs. First, we show that existing solutions are vulnerable to both attacks
and that the hooking locations our method identifies are deeper than where either
attack can reach. Then, we build an open-source1 API monitoring system prototype,
Toxotidae, using our deep hooks. We test its efficacy against real-world samples
that use classic stolen code techniques and against proof-of-concept implementations
of our attacks. Following recent literature [12], we extensively test its performance
using the Wine test suite: compared to a traditional design, Toxotidae adds an
average 7.62% slowdown and recovers API argument values with 99.40% accuracy.

2 Background and Motivation
Windows APIs. Windows offers programmers an extensive collection of APIs through
its DLL (Dynamic Link Library) files. A compiled binary can expose a list of APIs
it seeks to use and the Windows loader will fill an array, called Import Address Table
(IAT), with their run-time addresses. Alternatively, a program may look up an API
address at run-time among currently loaded code modules or after loading a new DLL.

Compiled code accesses Windows APIs through well-defined calling conventions
for argument passing. On 32-bit systems, all arguments are placed on the stack, typ-
ically in 4-byte slots, following the stdcall convention. On 64-bit systems, the first
four arguments are passed through registers, whereas any following argument is placed
on the stack, typically in 8-byte slots. Arguments come with markers (modifiers) that
identify an input (IN) and/or an output (OUT) value, where an OUT argument is
typically a pointer to a storage location for saving a result from the API [12].

Windows API code shows by design several regularities [25]. Functions come with
a prologue and an epilogue block. The prologue allocates a fixed-size space2, which we
term local area, for hosting local variables and spilling callee-saved registers; on 64-bit
API code, the allocation includes also the space needed to call functions internally.

1 Our artifacts are available at: https://github.com/cristianassaiante/toxotidae.
2 With the exception of leaf functions [25], which cannot modify the stack pointer and

other callee-save registers. Due to their simple nature, they are marginal for this work.

Evading Userland API Hooking, Again 3

The prologue supplies the area size to an instruction (sub or lea) that updates the
stack pointer accordingly. If the function needs to allocate stack space dynamically
(alloca), the prologue must set a frame pointer register to mark the base of the fixed
part of the stack. The epilogue simply restores the initial value of the stack pointer.

A peculiarity of 64-bit API code is that the caller reserves four stack slots before
the return address (and thus the local area). We refer to this space as the register
area. The called function may use it, if needed, for spilling registers.

Pitfalls of Hooking. To interpose on API calls, current monitoring solutions target for
hook insertion either the IAT by replacing its contents or the prologue of API imple-
mentations by adding trampolines. The first strategy is an easy prey of adversaries that
look up functions at run-time [12]. As for trampolines, adversaries can detect them [12]
or, as with attacks to anti-virus userland agents [1], even remove them by restoring
the original instructions. Recent research [12] recommends using more reliable and
transparent instrumentation mechanisms, such as dynamic binary instrumentation [9]
or hypervisor-based invisible breakpoints [22], to mitigate these threats.

However, a natural question is whether intercepting relevant program behavior
at system-call level would sidestep the pitfalls of userland API hooking. A common
belief is that kernel code is a harder target for attackers to tamper with (but also for
defenders to instrument) and that the behaviors of interest will show up in low-level
system call activity. When only a coarse-grained characterization of a program is
needed, this may be a reasonable compromise: for example, malware sandboxes
can instrument system calls to reliably capture in one place behaviors that can be
exercised by multiple APIs [11], for example when involving the registry or files.

However, this does not hold for general uses, as well as for other important malware
analysis scenarios. One prominent example are anti-virus products: since the introduc-
tion of PatchGuard in 2005, they can no longer insert hooks in Windows kernel code,
and many rely on userland API hooks as a primary source of information3. Another
relevant use case is reverse engineering: when attempting, for example, manual analysis
of an untrusted object or efforts like malware lineage [17], determining how a program
enacts a behavior can be just as valuable as intercepting it in a coarse-grained way.

Semantic loss can also be a problem. For example, network APIs typically see
their inputs lowered to a flat data representation for the device driver associated
to the connection. This makes, for instance, a gethostbyname operation virtually
indistinguishable from an InternetConnectA one. Other APIs show generic system
call activity, or even none: this is the case, e.g., with CryptBinaryToString, Get-
ModuleHandle, GetProcAddress, and other helpers often used by malware authors.

We conclude that userland API hooking remains necessary for general monitoring.

3 Proposed Attacks
This section discusses two attacks to the completeness and correctness of current API
hooking systems: an extended form of stolen code and a novel TOCTTOU attack.

As threat model and defense capabilities, we make the following assumptions.
The adversary knows the Windows build installed on the victim or prepares a payload

3 At times alongside Event Tracing for Windows (ETW), for which several evasions exist.

4 C. Assaiante et al.

for multiple versions. Attacks to the instrumentation technique are out of scope. If at-
tacking one property, the other is not a primary concern for the adversary: for instance,
they are not interested in hiding calls to the API undergoing a TOCTTOU attack.
Defenses that operate outside userland (e.g., hypervisor-based system call monitoring,
ETW-based monitoring) are out of scope and attackers may deploy existing evasion
methods if needed: this paper focuses on userland API hooking and its applications.

3.1 Stolen Code Attack to Monitoring Completeness

Kawakoya et al. in [19] report on stolen code attacks observed in malware samples in
the wild. In such an attack, the adversary copies at run-time4 some instructions from
the prologue of an API to a memory area owned by the sample. Then, when the
sample has to call the API, it first executes the copied instructions and then jumps
to the instruction in the original API code next to the copied ones.

Stolen code instances reported in literature [8, 29, 21] or that we found in real-
world malware and executable protectors (ASProtect, Enigma, Obsidium, PELock,
Themida, VMProtect) span the first few instructions (1-3) of an API5. Those showcase
helpful regularities among the vast majority of APIs. For example, in 32-bit Windows
APIs the first instruction is always a mov edi, edi that the compiler emits for hot-
patching purposes [7]; then, the next two instructions are typically push ebp; mov
ebp, esp. Thanks to such regularities, implementing an unaligned jump becomes
straightforward and already suffices to defeat existing API monitoring solutions.

One could argue that defenders should move their hooks to later instructions.
However, two problems arise: how deep a stolen sequence can be and if the API
argument values are still visible by then. In this paper, we study how deep such
attacks can go with only a modest effort for the attacker. Hence, with longer sequences,
one can realize cases where the argument is no longer visible at the original location.
Even worse, also branching decisions may become part of the stolen code, potentially
requiring monitoring systems to deploy path-sensitive hooks to intercept execution.

Ultimately, an attacker may decide to push the attack to go as deep as possible.
We believe a reasonable boundary is when the API makes a call. The target can be a
helper (typically out-of-scope for hooking [12] as uninteresting) or another API, which
the attacker may or may not decide to attack recursively6. We remark that stealing
an entire function is possible but, in our opinion, hardly profitable. The presence of
internal API calls entails a recursive stealing process, with potential dependencies on
the Windows version in use and the DLLs involved across calls. As for self-contained
APIs, it would be simpler to use an own re-implementation of the functionality.

Instantiating the Attack. We implemented a generalized version of stolen code
that targets the call boundary. The workflow is as follows. The attacker prepares a
memory region for hosting the API code to steal and locates the run-time address
of the API. Then, the attacker copies the entire API body or, more surgically (using

4 In an attack variant dubbed sliding call, the sample contains such instructions already in
its compiled body. The distinction is irrelevant for the techniques presented in this paper.

5 The most complex stolen code attack that we observed in the wild is from the Obsidium
protector and encompasses the first 6 instructions of an API.

6 As advanced monitors filter out internal calls due to their sheer number [12].

Evading Userland API Hooking, Again 5

a disassembler or precomputed information), just the bytes needed to cover the basic
blocks that execution can traverse before reaching an internal call. At each place
where a call occurs, the attacker overwrites the opcode with a gadget that, by reading
the target from an attacker-configured location, redirects execution as a tail jump to
the call instruction in the original API. The adversarial program can call the attacked
API with a normal call to where the stolen code resides, and pass the parameters
according to the calling convention.

As we show in Section 5, our extended attack enables the stealing of dozens
of instructions. At such depths, API arguments may no longer be visible at the
original locations. Furthermore, a deferred single hook may not suffice to intercept
API execution due to argument-dependent control-flow choices taken in the stolen
code. For example, on the DLL collection that we study in Section 5, our attack
copies path-sensitive code for about 53.77% of the APIs in Windows 10 64-bit.

3.2 TOCTTOU Attack to Monitoring Correctness

Time-to-check to time-to-use (TOCTTOU) race conditions create a window of op-
portunity for an attacker when a data item is accessed a first time for checking
purposes and then a second time for modifying execution state. During this window,
the attacker may deliberately alter the data and subvert the semantics of the initial
check. TOCTTOU attacks are well documented in UNIX-like systems, notoriously
affecting file systems [33] and the userland/kernel interface [4].

In our context, we propose and demonstrate the feasibility of a TOCTTOU attack
on userland API monitoring, targeting the window between call argument inspection
at the API prologue and when API code later acts according to such values.

Main Idea. As discussed before, current systems retrieve API argument values
right before executing the API prologue, inspecting the appropriate registers and
stack locations according to the calling convention and the API prototype. To ham-
per monitoring correctness, an attacker may invoke the API with misleading (e.g.,
innocent-looking) argument values to deceive the logging or security policy in place
and eventually replace them with the intended ones.

A vulnerable time window opens up between the value logging and the first use
of the argument value in API code, where the use is identified after excluding trivial
copies (e.g., for register spilling). From a separate thread, the attacker targets the
location from which the first use (and subsequent ones, if any) takes place and updates
the value with the intended one. As we will see, due to internal data movements,
such location often differs from the one where the API initially received the value.

In the following, we assume to have an oracle for determining the visibility and
location of API argument values at different points in API code and where their first
uses occur. Section 4 will present program analysis techniques supporting these tasks.

Vulnerable Locations. As the attacker issues the API call, the stack pointer value
upon entering the API is known. The attacker can use a relative displacement to write
the desired value to the location from which API code reads the value for its first use.

The attack we propose is not limited to the argument locations dictated by the
calling convention. It also benefits from data movements that API code makes when
copying an argument to a spilling slot or to a local variable that will hold it for the

6 C. Assaiante et al.

remainder of the computation. The oracle informs the attacker on the location of such
copies and where the first “real” use of an argument value happens, either as an operand
of a non data-movement instruction or if passed as argument to an internal call.

We identify three types of potentially vulnerable locations:
1 On-entry slot. The attacker overwrites the stack location where the caller

passes the argument (Section 2). A shortcoming of this case is that, on 64-bit code,
the first four arguments of any API are out of reach as they reside in registers.

2 Local-area slot. The attacker overwrites a copy of the argument value that
API code makes to a location in the local area (Section 2) of its stack frame. This
happens, for example, for register spilling purposes. Eventually, the program accesses
this copy to read the argument value and make use of it.

3 Register-area slot. This case is analogous to the previous one, with the copy
being located in one of the slots of the register area (Section 2) that the caller reserves
when invoking a 64-bit API. The API code may spill there a copy of an argument
(typically one passed via register, but not necessarily so) and eventually re-read it.

Figure 1a shows the distribution of such vulnerable locations across the APIs avail-
able in popular DLLs on selected versions of Microsoft Windows. While 1 is the most
frequent case, on the 64-bit build types 2 and 3 account for the majority of locations.

Timing the Attack. For a successful attack, the attacker should overwrite a target
memory location between the check (i.e., when the API hooking system logs argument
values) and the first use from API code. As we will measure in Section 5, this window
typically encompasses a dozen or more instructions, and in our experiments we were
able to attack windows of even just two instructions with good success.

As the attacker controls when the call is issued, locations of type 2 or 3 can be
attacked in a straightforward and reliable way. As they are not monitored, an attacker
may set a loop that overwrites the location even before the API call takes place7.

For locations of type 1 , the difficulty for a successful TOCTTOU attack is to
time accurately when to start the overwriting. This should happen only after the API
monitoring system has logged the initial fake value (or it would log the rogue one)
and before its first use. Furthermore, the latency of the API call processing is system-
dependent and, in the general case, unknown. For this task, we envision two avenues.

For high reliability, the attacker may build a deterministic method to intercept
when execution reaches a certain API instruction and then overwrite the location. As
one possible embodiment, the attacker sets an exception handler and then a hardware
breakpoint at the desired API instruction. We find this a safe evasion option when the
goal is to impede reverse engineering (Section 2), but it may be realistic also against
security solutions, as shown by recent attacks that disable security products [18] or
the Windows Anti-Malware Scanning Interface (AMSI) using hardware breakpoints.
Less refined variants, for example based on software breakpoints, are also possible.

Alternatively, the attacker may be willing to accept occasional failures in exchange
for simpler deployment and maximum stealth. For this scenario, we came up with
three techniques to determine with high probability that the monitoring has ended.
7 The attentive reader may argue that this holds only if a slot is not reused with different

variables: in this case, the overwriting should be timed (e.g., alike to what we do for 1)
or correctness may be affected. However, in our tests, slot reuse appeared quite rarely.

Evading Userland API Hooking, Again 7

 0

 0.2

 0.4

 0.6

 0.8

 1

advapi32.dll

crypt32.dll

kernel32.dll

kernelbase.dll

ole32.dll

oleaut32.dll

shell32.dll

user32.dll

w
ininet.dll

w
s2_32.dll

%
 o

f
to

ta
l

Windows 10 (64bit)

advapi32.dll

crypt32.dll

kernel32.dll

kernelbase.dll

ole32.dll

oleaut32.dll

shell32.dll

user32.dll

w
ininet.dll

w
s2_32.dll

On-entry Slot Register-area Slot Local-area Slot

Windows 10 (32bit)

advapi32.dll

crypt32.dll

kernel32.dll

kernelbase.dll

ole32.dll

oleaut32.dll

shell32.dll

user32.dll

w
ininet.dll

w
s2_32.dll

Windows 7 (32bit)

(a) Type distribution for vulnerable locations

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5000 10000 15000 20000 25000 30000

With API Monitor
Fake Log

Native

S
u

c
c
e

s
s
 r

a
te

Delay

(b) Delay calibration: the value where
the two lines intersect is a good pick.

Fig. 1: Breakdown of TOCTTOU-attackable locations and feasibility in hardest setting.

The first two are surgical and mainly reliable: to time the overwriting, they wait for
some sentinel value to appear on the stack as part of API code execution. The third
is more general and attempts multiple TOCTTOU attacks with a benign value on
an API to indirectly measure the delay introduced by the monitoring.

Sentinels. One sentinel kind are stack immediates: i.e., immediate values that API
code pushes to fixed stack locations. A typical example in 32-bit API code is the size
pushed on stack as argument when calling internally __SEH_prolog() to configure
Structured Exception Handling. The attacker implements a busy-waiting loop that
inspects the stack memory until the known constant appears: when it does, execution
has left the monitor, and the attacker can start overwriting the target location.

Another sentinel kind are spilled registers: i.e., registers that API code spills to
fixed stack locations and whose content is known to the attacker. The typical case
are callee-saved registers, which the attacker can arbitrarily set before calling the
API, but also API argument values and even the base pointer value (from the push
ebp in the API prologue) can serve the purpose in a busy loop designed as above.

Delay Loop. When no sentinel is available, the attacker may exploit TOCTTOU
race conditions also to guess when the monitoring is over. The attacker chooses
two non-suspicious values for an API of interest, calls it with one, and starts the
overwriting operation with the other with a delay. Then, the attacker inspect the
result of the API (or its effects on the system) to determine which value was used.

The attacker employs a delay calibration loop to gradually vary the delay and
measure the stability of the result on multiple calls. The goal is to find a delay suffi-
ciently high such that, if increased further, the overwriting will likely happen after the
use; aiming for a high delay provides the attacker with confidence that the monitoring
has, by then, ended. From then on, to call the API with conspicuous arguments, the
attacker issues only a single call and adds the measured delay to the thread carrying
the overwriting presented for the main attack. The value can be reused to attack
other APIs with a similar expected logging time (e.g., for argument count and types).

Figure 1b plots the effects of the delay, measured as the trip count of a loop
assembly instruction for busy-waiting, in a native execution and under a popular [12]
hooking tool, API Monitor. The attack targets the WSAStartup API. In the Windows

8 C. Assaiante et al.

10 build used for the test, the API offers a TOCTTOU window size of 21 instructions.
The attacker identifies a high delay value that results in the API executing with the
rogue argument with, at least, the desired probability. As we inspected the logs of
this and similar experiments, we saw that a very high success rate in timely argument
overwriting is associated with the API monitoring system logging the fake initial
values. In the figure, the point where the dashed lines insersect shows a 91% success
rate if the attacker waits for the corresponding delay before starting the attack.

Discussion. The TOCTTOU attack we propose is the first targeting API hooking
correctness and, to the best of our knowledge, also the first entirely within userland.
We target a design weakness of current hooking systems, exposing fake indicators for
argument values and then overwrite them as late as possible, either in their original
location or in later copies depending on the opportunities that the victim API offers.
We remark that the attack applies also to OUT arguments, as the attacker can put
a fake result in the original buffer and have the API write the result to a new buffer.

Our goal is to show that TOCTTOU attacks are feasible. We note that many
targets (type 2 and 3) are straightforward and we propose alternatives to compre-
hensively treat locations of type 1 with different degrees of reliability and complexity.

The next section presents techniques that examine API code for identifying what
are the instances of an argument value and where the code uses them. While we will
use them for defensive purposes (including the defeat of our attack), they can also
measure to what extent Windows APIs may be vulnerable to TOCTTOU races.

An orthogonal aspect worth mentioning is that the delay loop technique may be
used to detect if a hooking system is present. In particular, we noted that the distribu-
tion of the delay value compared to its effects on the API outcome changes significantly
between native and monitored executions, with the latter needing much higher values.

4 Towards a Principled Defense
This section proposes countermeasures for more reliable API hooking designs. In
the following, we present program analysis techniques to track the propagation of
the values provided as call arguments throughout API code and study their liveness,
which is important in turn in order to identify what value copies may be accessed.

4.1 Overview

A clear weakness of current API monitoring systems is their on-entry hooking policy.
We argue that placing probes in deeper spots would significantly reduce, if not close,
the attack surface for completeness and correctness attacks as those from Section 3.

To this end, the main obstacle to overcome is that, for deeper spots, defenders
should determine until when argument values are still visible, including in the reasoning
the locations where they may have flown through data movements. For example,
compilers perform a register allocation process to control which intermediate values
and expressions reside in registers, and when a register must be temporarily freed for
other computations, the compiler spills its value on the stack [6]. Also, API code may
read argument values and host them in temporary, internal variables before using
them. Even debug information available for Windows DLLs as PDB files is insufficient
to track these movements. Therefore, we designed a binary-level static analysis to track
the propagation of API call argument values through the control-flow graph (CFG).

Evading Userland API Hooking, Again 9

Main idea. We want to determine the deepest point(s) in the CFG of the API where
one can place hooks and still be able to determine not only that an API call took place,
but also which were the parameters supplied for it. We aim for a data-flow analysis
that can trace parameter value propagation from the entry point of the API. More
precisely, we want to see how the values they contain flow through API code and where
they end up stored (in spilling slots or copied to internal variables hosted on stack or
in registers) for eventually being read again for computations that make use the value
(e.g., branches, arithmetic manipulations, supplying an argument to an internal call).

The most convenient place where a parameter can be retrieved, either in its original
location or through a copy, is where API code uses its value last. This scenario covers
both unaligned invocations (as with stolen code schemes) and TOCTTOU attacks8.

The data-flow analysis we design computes for every basic block in the API an
input list describing which parameters are visible and their current location(s) when
execution enters the block. Then, we evaluate how instructions in the block can affect
such list (for instance, by polluting a register containing a dead value), and produce
an output list for the block. For any block, the input list is given by a merge operation
where we intersect the output lists of the blocks with an outgoing edge to it.

The input and output lists that we build for the data-flow analysis also allow
us, through further refinements, to precisely locate when the API code accesses a
parameter value, regardless of its availability for inspection. Identifying where uses
happen is important because an attacker may apply the TOCTTOU idea to overwrite
the location after the use and mislead a hooking system that inspects a value “too late”.

Finally, relying on topological properties of the CFG for efficient insertion, we
identify suitable places for placing hooks to log each API parameter, so as to cover all
the alternative execution paths in the CFG while being at the deepest possible places.

4.2 Tracking Parameter Value Propagation

We model the control-flow graph as a directed graph G=(V, E) with a set of vertices
V and edges E. The API prologue corresponds to vertex v0. We assume there is a
single vertex with no incoming edges and that there are no isolated vertices.

Algorithm 1 is designed to work on compiler-generated code that is well-behaved [23]
in terms of stack manipulations: by that, we mean that every basic block can alter
the stack pointer register only by a predetermined quantity and that CFG join points
(i.e., at basic blocks with multiple predecessors) see an identical stack pointer variation
across all the incoming paths compared when execution reached the prologue v0. We
note that Windows API code naturally meets these characteristics (Section 2).

For each vertex v∈V , the algorithm maintains two sets PARin[v] and PARout[v]
that it updates using a fixed-point approach. Initially, PARin[v] and PARout[v] are
not instantiated (we use ⊥), with the exception of PARin[v0] that we populate with
the set of pairs for each argument and its location at the prologue according to the
calling convention. The algorithm uses a worklist W with initially W=⟨v0⟩.

The algorithm pops a vertex v from the worklist, and if PARin[v] is not initialized,
it computes it by merging PARout[vpred] for each predecessor vpred of v. Informally,
all the results from the computation of the predecessors of vertex v are merged

8 In case of multiple uses, the attacker has to overwrite the value already before the first use.

10 C. Assaiante et al.

Algorithm 1 Proposed Algorithm for Tracking Parameter Value Propagation
1: ∀v∈V −{v0} :PARin[v]=⊥ ; ∀v∈V :PARout[v]=⊥
2: PARin[v0]={(argi, loci) | value of argi is at loci by calling convention}
3: W=⟨v0⟩
4: while not W.empty() do
5: v=W.pop()
6: I={PARout[vpred] | (vpred, v)∈E ∧ PARout[vpred]≠⊥}
7: if I ≠∅ then
8: new_in=merge(I)
9: if PARin[v]==new_in then continue

10: PARin[v]=new_in

11: new_out=compute(v, PARin[v])
12: if PARout[v]≠new_out then
13: PARout[v]=new_out
14: for each vsucc s.t. (v, vsucc)∈E do
15: W.push(vsucc)

together. After the initialization of PARin[v], the algorithm computes statically the
effects on memory and registers of the instructions in the basic block and computes
the output state. Mainly, the static analysis recognizes the introduction of value copies
to new locations through data movement instructions, while it discards a currently
known location when its contents are overwritten. If the output state differs from
prior iterations, PARout[v] is updated and all the successors of v enter the worklist.

We treat information from multiple predecessor blocks via set intersection. In
particular, the merge() operator takes all the pairs (argi,loci) such that (argi,loci)∈
PARout[vpred] for all the predecessors vpred of the current vertex v. Informally, an
argument-location pair is added to the result set iff. it is in the PARout set of each
predecessor. This approach is the most conservative possible for value correctness,
as it discards information for locations whose visibility is potentially path-sensitive.

For the static analysis of compute(), we track registers, memory contents, and
related aliases; we include provisions for more complex cases of pointer expressions on
structure fields and nested dereferencing. For instructions that modify operands for
purposes other than data movements, we clear from the set all the arguments that see
their location altered by the instruction. This choice is conservative too, as compilers
may realize data movements also through arithmetic/logic instructions: however, in
our experience, such cases are rare in Windows API code; therefore, we opted not
to include heuristics for them, avoid the risk of introducing unnecessary imprecision.

4.3 Identifying Live Copies of Argument Values

The conservative approach taken at merging data-flows in Algorithm 1 is adequate
for retrieving call argument value against traditional API obfuscation attacks. That
is, when the analysis reports a location for a parameter value at a certain program
point from API code, the value will be identical to the one visible upon entering the
prologue. However, if the adversary attempts TOCTTOU attacks like the one we
described in Section 3.2, this property no longer holds.

Evading Userland API Hooking, Again 11

Consider a scenario, rather frequent in our observations, where API code maintains
two copies of an argument value. At some point, API code no longer uses the first
copy, and does not reuse its storage location: therefore, the copy remains visible at
later basic blocks, ideally even until the API epilogue. From that point forward, API
code accesses instead the other copy and, for example, issues an internal API call
using it or makes other program state changes. If the storage location of this other
copy is vulnerable to a TOCTTOU attack, an API monitoring system that logs only
the first copy (for example, just because it is visible longer) will see only the initial
parameter value, missing the value that the adversary sets instead via the attack.

Therefore, at every program point we should look for what parameter value
instance(s) API code may access and use in the remainder of the execution. This
problem is similar to what in compiler theory goes by live variable (or liveness)
analysis [26]. In particular, a variable is said to be live at a program point if the
program may access it in the remainder of the computation without reassigning it
first. Alternatively, this can also be modeled as a reaching definition problem [26].
Techniques for conducting either analysis on source code are well established.

To cope with our scenario, we first extend Algorithm 1 to compute PARin and
PARout sets at the granularity of individual instructions. Then, we adapt the function
compute() to construct the standard LIV Ein and LIV Eout sets of a standard back-
ward liveness analysis, again at the granularity of individual instructions. Therefore,
LIV Eout[i] contains the locations that the program may reference in the reminder of
the execution past i (i.e., the locations that are live after i), and LIV Ein[i] contains the
locations that are live at i. At control-flow join points, the backward analysis assigns
LIV Eout[i] as the union of the sets LIV Ein[j] where j is an immediate successor of i.

Therefore, to solve our problem, we can intersect the locations from LIV Ein[i]
with the locations that appears in the pairs at PARin[i] as hosting a parameter value.
This will remove stale copies of parameters values from the results of Algorithm 1,
exposing the sole instance(s) that a monitoring system should consider as valid.

4.4 Hook Placement

Knowing which copies of parameter values are live at each instruction in API code
provides sufficient information for an API monitoring implementation to reliably trace
API call parameter values. The last element of our approach to counter completeness
and correctness as in Section 3 is to determine what are the most convenient places
for hook insertion to combine efficacy (i.e., to defeat the attacks) with performance.

In general, aiming for the deepest places is a good strategy as long as all the alter-
native execution paths throughout the API traverse them. Unfortunately, not all paths
are similarly deep. This implies that some paths will need an early logging, whereas
for deeper paths we may have to re-inspect the value against TOCTTOU attacks.

We can address this problem by building dominator information on the CFG and
using it as follows. For each leaf node in the dominator tree and for each API param-
eter, we see if a live copy of the parameter value is visible at any of its instructions,
starting from the last in the basic block. If found, we mark the instruction as a place
for hook insertion. Otherwise, we inspect its ancestors until a copy becomes available
and we hook it. The intuition behind the criterion is that we want to defer logging
values unless their visibility becomes path-sensitive.

12 C. Assaiante et al.

4.5 Implementation

We implement the analysis techniques from the previous sections in Python in about
2200 LOC. For disassembly and CFG reconstruction, we use off-the-shelf tools: in
particular, we opt for IDA Pro [13] as it also natively integrates with the PDB debug
information files that Microsoft makes available for Windows DLLs. These files report
the stack pointer variation at each instruction compared to its value at the prologue.
We retrieve this information directly from IDA, including the variations induced by
internal function calls when they clean up the stack upon return. For API prototypes,
we resort to existing efforts [12] based on automatic extraction from Windows header
files. Finally, to capture the semantics of instructions, we use the Capstone [5]
framework to recover operands (including the individual components of complex
memory addressing expressions) and memory access kinds (read, write, or both).

We then implement Toxotidae, a prototype API tracer based on the design we
argue for in this paper. For its realization, similarly as in the most recent work in the
area [12], we use Pin [24] for dynamic binary instrumentation. As we only need to
hook specific addresses, we remark that also implementations based on virtualization-
assisted hardware breakpoints or even user-space inline hooks remain possible. We
provide Toxotidae with precomputed program points for hook insertion (currently
for selected Windows 7, 10, and 11 builds, but adding more is straightforward) and
with prototypes for all the APIs from the DLLs of interest for monitoring.

4.6 Discussion

The program analysis techniques we presented allow us to study the propagation and
life span of parameter values throughout the locations in use to a function. We use
this information to revisit the canonical design of API hooking solutions, identifying
multiple spots for hook insertion that account for the plurality of alternative paths
and the decaying visibility of value copies. Each parameter sees the insertion of
dedicated hooks; as we measure in Section 5, their number is small in practice.

The output of Algorithm 1 also provides an obvious way for computing vulnerable
locations for TOCTTOU attacks according to the patterns 1 - 2 - 3 we showed in
Section 3.2. In Section 5, we will experimentally measure that our defensive hook are
deeper than the reach of both our extended stolen code attack and the TOCTTOU one.

Finally, our analysis techniques may be of general interest. For example, we believe
they may be helpful to amend debug information that optimizers discard inadver-
tently [2] or emit incorrectly [10] due to inaccurate implementations, by comparing
it with the storage locations we track. We leave this investigation to future work.

5 Evaluation
For evaluating the attacks and the defense methodology presented in the paper, we
seek to answer the following research questions:

RQ1: How are common Windows APIs vulnerable to our attacks?
RQ2: How many hooks are needed for the proposed defense? How deep are they?
RQ3: What are the accuracy and performance costs of the proposed defense?

We conducted our evaluation mainly on two virtual machines running Windows 7
SP1 32-bit (build 7601) and Windows 10 64-bit (version 1803). The host machine

Evading Userland API Hooking, Again 13

Table 1: DLLs and analyzed APIs (H: Hooks, P: Parameters, A: API).
DLL Windows 10 (64bit) Windows 10 (32bit) Windows 7 (32bit)

Analyzed Parametric H/P H/A Analyzed Parametric H/P H/A Analyzed Parametric H/P H/A
advapi32.dll 626 612 1.092 3.6127 643 632 1.0513 3.6345 680 669 1.1936 4.142
crypt32.dll 258 258 2.8088 10.6279 284 280 2.464 9.5643 284 280 2.1117 7.8143
kernel32.dll 1152 1147 1.076 2.476 1158 1150 1.0477 2.6296 1109 1097 1.3872 3.6737

kernelbase.dll 1315 1309 2.1804 5.8892 1352 1347 2.0753 6.0371 504 502 2.0277 5.9801
ole32.dll 239 228 2.2024 5.7061 218 211 2.1315 5.6161 315 305 2.3748 5.9607

oleaut32.dll 407 406 3.024 7.8818 395 395 2.7983 7.3671 392 392 2.4534 6.5434
shell32.dll 330 300 1.6542 4.3633 379 354 1.5549 4.1695 404 392 1.728 4.8673
user32.dll 679 658 1.7289 4.114 676 670 1.5849 4.0 672 665 1.3846 3.588
wininet.dll 275 264 2.8932 10.4735 298 276 2.3741 8.5688 295 274 2.6854 9.6131
ws2_32.dll 161 161 2.7717 9.8944 149 149 2.9597 10.1946 147 147 2.288 7.585

 0

 20

 40

 60

 80

 100

 120

 140

 160

advapi32.dll

crypt32.dll

kernel32.dll

kernelbase.dll

ole32.dll

oleaut32.dll

shell32.dll

user32.dll

w
ininet.dll

w
s2_32.dll

avg depth
avg hooks depth

avg stolen code depth
avg TOCTTOU depth

#
 i
n

s
tr

u
c
ti
o
n

s

 0

 20

 40

 60

 80

 100

 120

 140

 160

advapi32.dll

crypt32.dll

kernel32.dll

kernelbase.dll

ole32.dll

oleaut32.dll

shell32.dll

user32.dll

w
ininet.dll

w
s2_32.dll

avg depth
avg hooks depth

avg stolen code depth
avg TOCTTOU depth

#
 i
n

s
tr

u
c
ti
o
n

s

Fig. 2: Average depths. Left: Windows 10 (64-bit). Right: Windows 10 (32-bit).

has an Intel Core i7-11800H CPU @ 2.30GHz with 8 physical cores (16 threads) and
32 GB of RAM. Each VM received 4 virtual CPU cores.

Table 1 shows the 10 DLLs we select for the study, following the choices of the
authors of the SNIPER tracer [12]. These DLLs feature heteregeneous APIs used
both in malware and goodware, covering disparate tasks from file manipulation to
network communication and cryptography.

We analyze only APIs that take arguments. Then, we further check if they have
at least one argument that is live at the prologue, labeling them parametric. APIs
not in this group are deprecated or dismissed APIs or return constant values.

For comparison, we consider three popular monitoring tools (Rohitab API Monitor,
SpyStudio, WinAPIOverride) and a state-of-the-art academic system (SNIPER [12]).

Attacks. To answer RQ1, we first study in Figure 2 how deep that the extended
stolen code and the TOCTTOU attack can go. For a meaningful comparison, we
consider for the chart only the functions that are amenable to both. Provided as a
reference, the average function depth of functions is measured as the length of the
maximal acyclic path in the CFG in terms of traversed instructions.

We recall that TOCTTOU attacks on 32-bit APIs are always possible thanks to
pattern 1 , hence the distinction is relevant only for 64-bit API. For the other attack, to
keep the analysis realistic, we consider only functions with at least 10 instructions and
that are not stubs that jump into another API (or an attacker would just attack it).

The data for stolen code on the 64-bit APIs not amenable to TOCTTOU attacks
do not show relevant differences, hence we omit them for brevity. For similar reasons,
we omit details on the 32-bits DLLs of Windows 7 and refer for them to the Windows
10 counterparts. The average function depth differs between the 32-bit and 64-bit
APIs mainly because vulnerable 32-bit APIs are a superset of vulnerable 64-bit APIs.

14 C. Assaiante et al.

DLL Vulnerable APIs (%) Redirecting Parametric
advapi32.dll 147 (49.00) 312 612
crypt32.dll 122 (51.19) 23 258
kernel32.dll 128 (32.82) 757 1147

kernelbase.dll 432 (36.12) 113 1308
ole32.dll 40 (24.69) 66 228

oleaut32.dll 41 (11.61) 53 406
shell32.dll 55 (26.83) 95 300
user32.dll 127 (32.15) 263 657
wininet.dll 104 (40.94) 10 264
ws2_32.dll 67 (43.23) 6 159

Fig. 3: APIs vulnerable to TOCTTOU
attacks in Windows 10 64-bit APIs.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

advapi32.dll

crypt32.dll

kernel32.dll

kernelbase.dll

ole32.dll

oleaut32.dll

shell32.dll

user32.dll

w
ininet.dll

w
s2_32.dll

1st-4th Argument
5th-* Argument

A
v
e
ra

g
e
 %

 o
f
v
u
ln

e
ra

b
le

 a
rg

s

Fig. 4: Arguments vulnerable to TOCT-
TOU attacks in Windows 10 64-bit APIs.

Extended Stolen Code Attack. We can immediately see from Figure 2 that depths
of about 1–2 dozens of instructions are possible. Figure 6 (Appendix A) provides
additional data points, including the median absolute deviation. These depths are
significantly larger than in currently documented stolen code instances (Section 3.1).

Also, they back our claim that current on-entry hooking designs cannot be amended
by simply pushing their analysis a few instructions deeper. Not only argument locations
may change (especially with 64-bit code), but further analyses we carried on these
Windows 10 64-bit APIs showed that about 53.77% of the code sequences our method
can steal include path-sensitive code (which requires multiple hooks for interposition).

To show the feasibility of the method, we implemented a script (Section 3.1) that
automatically and surgically steals API code until the call boundary. We use it to
shield synthetic test programs, as well as several calls in the code of Al-Khaser, a
popular utility for stressing malware analysis environments. For the latter, we test 21
APIs (such as AdjustTokenPrivileges, CheckRemoteDebuggerPresent, EnumPro-
cesses, SleepEx, and VirtualProtect) with heterogeneous depths. All protected
calls operate correctly both in a native execution and when under the four monitoring
systems we chose for the evaluation, going unnoticed by all of them.

TOCTTOU Attack. The average depth of vulnerable locations reported in Figure 2
represents the average size, in terms of instructions, of the TOCTTOU window that an
attacker can target before API code uses a parameter value (for purposes other than
making a local copy). On 64-bit code, these windows are deeper: this is due to the fact
that, as we discuss next, fewer arguments see their values being stored in vulnerable
locations—whereas all APIs and all arguments are attackable on 32-bit DLLs.

Figure 3 shows how many 64-bit parametric APIs from Table 1 are vulnerable. We
further refine parametric APIs by discarding redirection stubs (similarly as with stolen
code), as for an attacker it would be more convenient to attack their targets directly.
Therefore, we report the number of APIs that we can attack in one or more argument
and express them also in terms of percentage of non-redirecting parametric APIs.

Figure 4 shows how frequently arguments are attackable: the total amount is com-
puted as the distinct vulnerable arguments among those actually used by each vulnera-
ble API inside the DLL. Then, we further distinguish the identity of arguments between
those passed by registers (from the first up to the fourth) and those passed via memory.
Overall, across all vulnerable APIs, we may attack nearly half of their arguments.

Finally, regarding vulnerable storage locations, we already reported the distribu-
tion of locations types 1 - 2 - 3 in Figure 1 when presenting the attack in Section 3.2.

Evading Userland API Hooking, Again 15

 0

 0.2

 0.4

 0.6

 0.8

 1

advapi32.dll

crypt32.dll

kernel32.dll

kernelbase.dll

ole32.dll

oleaut32.dll

shell32.dll

user32.dll

w
ininet.dll

w
s2_32.dll

%
 o

f
to

ta
l

Windows 10 (64bit)

advapi32.dll

crypt32.dll

kernel32.dll

kernelbase.dll

ole32.dll

oleaut32.dll

shell32.dll

user32.dll

w
ininet.dll

w
s2_32.dll

Stack Immediates Spilled Registers Delay Loop None

Windows 10 (32bit)

advapi32.dll

crypt32.dll

kernel32.dll

kernelbase.dll

ole32.dll

oleaut32.dll

shell32.dll

user32.dll

w
ininet.dll

w
s2_32.dll

Windows 7 (32bit)

Fig. 5: Deferred overwriting strategy needed at TOCTTOU-vulnerable locations.

Here, to complete our investigation on the potential attack surface of Windows APIs,
we provide additional insights on how we can attack locations of type 1 . Figure 5
analyzes all vulnerable locations and shows as “none” those that we classify as 2 or 3
(which are straightforward to attack, Section 3.2). Then, it divides locations of type 1
according to the method needed to attack them. To recap, either the attacker may ben-
efit from sentinel values or they have to explicitly determine (with a delay calibration
loop or with a breakpoint-like mechanism) when the on-entry monitoring is over. We
remark that the latter is the hardest but also, by far, the least frequent case in practice.

Summarizing, TOCTTOU attacks are possible and require sophistication in the
overwriting step only for a limited fraction of parameters. 32-bit APIs are naturally
more vulnerable due to stack-passing for all arguments, whereas for 64-bit (with the
exception of the APIs from oleaut32.dll) the DLLs in our study show that 11.61
to 51.19% of non-redirecting APIs are vulnerable in one or more of their arguments.

As for feasibility, we conducted a preliminary investigation with several proof-of-
concept implementations (PoCs) on 12 machines featuring different CPU models (9
Intel Core models from 5 generations and 3 AMD Ryzen from 2 generations) and
Windows versions (Windows 11 Home builds 22631 and 22621, Windows 10 Home
19045, Windows 10 Education 17134). The PoCs cover multiple APIs (e.g., CryptBi-
naryToStringA, ShellExecuteA, RegOpenKeyA, WSAStartup, inet_ntop) and all
the location types and overwriting strategies presented in the paper. Each PoC
attempts 20 executions of the API and checks whether it executed using the initial
or the overwritten parameter(s). Across our tests, we obtained a success rate of
97.06%. When inspecting the failures, we noticed that they originated from a fragile
monitoring choice on one stack-immediate sentinel value, which was selected too close
to the instruction accessing the parameter location under attack.

After excluding this program, we repeated these tests on the machine used for
the main evaluation using the four API monitoring tools chosen for the study. None
of the tools was able to log any rogue argument value in the 20 trials.

However, while the others operated correctly, API Monitor resulted in several
crashes on 64-bit code. We noticed that it alters the stack layout significantly: its
hooking stub uses the register area that the program sets up for the API (Section 2)
to spill register-passed arguments, copies stack-passed arguments lower in the stack,
and restores register-passed arguments before issuing the call to the API. This has two
drawbacks: transparency, as its hooking is straightforward to detect by monitoring

16 C. Assaiante et al.

the original register area contents, and security, as now every arguments becomes a
type 2 location and we can attack it reliably by just adding a predetermined offset.

Defenses. Table 1 and Figure 2 contain relevant information for discussing the
effectiveness of the proposed defense (RQ2). The key insight from Figure 2 is that
the hooks we can place thanks to our value tracking analysis are appreciably deeper
than the reach of both extended stolen code and TOCTTOU attacks.

Besides average values, we checked that no attack path is deeper than where we
put our deepest hooks. When this hold, the hooks we insert counter completeness and
correctness attacks by construction. Across all the APIs we tested, the only failure was
one stolen code case surpassing the last point where our analysis deems an argument
visible (hence we hook it). A bug in the analysis had made us miss a copy available
within a struct, despite the analysis tracked the storage of the struct correctly.

The path-sensitive insertion policy guided by dominator information that we use
for hook insertion results in a number of hooks that is rather limited on average.
In Table 1, we plot as H/P the average number of hooks that we need for each
parameter of the API throughout the CFG. The average is computed on a per-API
basis and then aggregated as a geometric mean across APIs. Across the three DLL
collections we study, we find that this number is in the range 1.0477−3.024. Then, we
plot as H/A the average number of hooks that we insert for each API. This number
is in the range 2.476−10.4735. While H/P reflects the complexity of the interactions
in API code over argument values, H/A reflects the opportunity that we take for
optimizing hook insertion, grouping per-parameter hooks when at identical program
points. Furthermore, in practice, almost the entirety of these hooks execute only once
per API call, as for the DLLs that we study they are inserted within loops only rarely.

Testing. To test the efficacy of our Toxotidae system, we successfully run the PoCs
that we synthesized for the extended stolen code and TOCTTOU attacks. We also
test real-world instances of traditional stolen code attacks, in particular executables
shielded with protectors (Obsidium, Themida, VMProtect) and 10 malware samples
(Table 2). We obtained the samples thanks to the authors of API Chaser [19], who
shared with us the 2 samples used for its evaluation, and to a professional malware
analyst that spotted them during their daily job; the 8 samples are mainly from 2020
and 2021. As expected, all these executables successfully evade the four existing API
hooking tools we tested, whereas Toxotidae traces their calls correctly.

An interesting sample is 051...dc4, which invokes the LoadLibraryA API nor-
mally excepts when it loads, using stolen code, cmcfg32.dll for configuring the
Microsoft Connection Manager for remote accesses. We also find it interesting to
report on 08c...4b1, a sample presumably protected with Obsidium. After invoking
in a normal way typical APIs for code unpacking, it performs evasive sequences
around debugger and virtualization artifacts (e.g., CreateFileW on \??\VBOXGUEST)
using stolen code. We believe this is done to frustrate analysts that try to analyze the
sample using manual debugging tools that do not automatically counter these tactics.

Performance. Finally, we tested accuracy and overheads of Toxotidae using the test
suite of the Wine emulator for the DLLs selected for our study. This suite, used also in
the evaluation of SNIPER [12], stresses different implementation aspects of APIs; also,

Evading Userland API Hooking, Again 17

Table 2: Analyzed malware samples. 5fd.. and e09.. are from API Chaser [19].
Hashes (md5)

9407345f8a1d891624fcba99d20a8b33 61f5e1d9bdc23b0328ef7e874314e3a7
886a19aa14a41386dfb695ad908a1999 08cfaf120cd12bafe53c2fbb50c204b1
33fb8185801d229c91d4aef1efba941d de71c06b30caa7488f6f42380316ef18
f1cfdb7530169e9398bcc78095ecdcf3 0519f94bf975fdc6b92b40f282853dc4
5fd727d3c11c66583f92970e4c0ec197 e0974042a67ad3db9042e16e4dcb0465

being deterministic and more API call-intensive than real-world applications, it enables
reliable accuracy tests and simulates worst-case overhead scenarios. While the authors
of SNIPER picked one workload per DLL, we used all the 130 available for our DLLs.

For accuracy, we configure Toxotidae to log parameters also upon entering an
API and systematically compare their values against those from our deeper hooks.
Across all tests, our hooks retrieve correct values in 99.40% of all invocations of 64-bit
APIs and 99.82% on 32-bit APIs. We find this result encouraging for a static analysis.

The main cause of inconsistency in our results are partial uses of argument
locations that our static analysis does not model correctly: for example, a BOOL type
on Windows is sized as an int but most APIs only use its least significant byte.

For hook coverage, we compute the geometric mean of the distinct hooks hit across
all tests among those we set for an API: we measure a hit ratio of 86.66% on 32-bit APIs
and 85.32% on 64-bit APIs, reflecting the good heterogeneity of the test suite. The aver-
age depth of hooks hit is of 25.73 instructions on 32-bit APIs and 23.29 on 64-bit APIs.

For overheads, we compare the running time of our approach against Toxotidae
configured to log arguments like traditional hooking tools do. Building both tools
with -O2 in MSVC and the optimized buffering of SNIPER, we measure an average
slowdown of 4.66% (std. dev. σ=0.0399) on 64-bit tests and of 7.62% (σ=0.0765) on
32-bit tests. Hence, the increased number of hooks results in modest run-time overhead
increases on call-intensive tests. This answers RQ3 and concludes our evaluation.

6 Other Related Works
Binary Analysis. In the vast universe of binary-level program analysis techniques pro-
posed over the years, our work shares loose analogies with techniques that have been
explored, among others, for pointer analysis [20], pinpointing memory vulnerabilities
in unknown layouts [32], or recovering symbolic information from stripped binaries [3].
However, we are unaware of techniques directly applicable to the tasks of Section 4.

Stolen Code. Countermeasures for stolen code techniques are given in API Chaser [19].
The authors propose techniques based on pre-boot disk tainting and code taint prop-
agation to tag instructions according to their source: benign for system code and
known applications, api for API code, and malware if from the untrusted program
under analysis. The method intercepts stolen code sequences as the stolen code will
have a benign tag and the control transfer to it will have a malicious tag. Documented
ways to hinder this approach include issuing calls via code reuse gadgets, as they
would be tagged as from a benign location, and imprecisions of taint analysis with
implicit flows. API Chaser comes with important setup costs and overheads due to
the taint analysis. Our approach is more efficient in both respects. API Chaser would
handle our stolen code extension but be defeated by the TOCTTOU attack.

18 C. Assaiante et al.

TOCTTOU Attacks. These attacks are well-known to users of UNIX-like system. For
example, Wei et al. [33] exploit a race condition between the code responsible for check-
ing file existence and permissions and the code for opening a file, resulting in gaining
access to files restricted to superusers only. Two recent industry presentations [14,
15] leverage a race condition between a system call invocation and the Linux kernel
when copying memory content from user space to kernel space. An attacker may use
the condition to hide the parameters for a few system calls. Our attack works instead
in userland, systematically identifying races and categorizing them for exploitability.

Schwarz et al. [30] propose microarchitectural techniques to detect double-fetch op-
erations and a fuzzer to narrow down the exploitable cases, attacking trusted execution
environments and system calls. Our approach is different, as we study code statically
and do not need a double-fetch vulnerability to attack a location, but it may be
interesting to look into similar exploitation techniques for generalizations of our attack.

7 Limitations and Future Works
We acknowledge the following limitations for the research presented in this paper.

As we rely on static analysis for analyzing Windows DLLs, we may miss locations
or model wrong ones due to imperfection in the CFG reconstruction phase, when
modeling the effects of specific instructions in compute(), or when PDB files do not
contain prototype information for internal calls to helper functions. We discussed
an example of modeling imprecision in Section 5; more may occur when considering
other libraries or, more generally, code generated for other platforms or systems.

For stolen code attacks, we left out cases of complete code copies, considering
them inconvenient for an attacker. In particular, recursive stealing of internal calls is
necessary for stealth (or those would show as from program code and hooking tools
would log them) and comes with issues that we discussed in Section 3.1. Nonetheless,
complementary measures are a possibility, such as using the code tainting of API
Chaser [19] or shepherding memory and file content transfers involving Windows DLLs.

For TOCTTOU attacks, one aspect that we did not cover in the presentation
is when an API monitoring solution may re-inspect the initial storage of parameters
upon API return. This may expose attacks to locations of type 1 at API return time.
Therefore, the attacker would need to restore the initial fake values at such locations.
While for API entry events we came up with sentinel values or delay calibration loops,
the only strategy that we foresee for an attacker is to halt execution with a breakpoint
on an instruction within the API epilogue or one nearby that dominates it.

More evaluation and calibration is needed for threat actors to deploy our TOCT-
TOU attack at a scale, also depending on their reluctancy to occasionally fail and
reveal the intended API arguments. This observation mainly applies to type- 1
locations when the attacker prefers not to use a deterministic execution interception
mechanism and no sentinel value is available, leaving the delay calibration loop as
only viable option. Nonetheless, the goal of this paper is showing that these attacks
are possible and that, as we showed, can be countered in a principled way.

Finally, we are hopeful that the techniques presented in this paper may be helpful
for other tasks. We hinted at a potential application for debug information recovery
in Section 4.6. Another interesting opportunity could be to study how our deep hooks

Evading Userland API Hooking, Again 19

may be used to raise the bar to unhooking attacks to anti-virus and EDR products and
to similar approaches that disable key Windows components like AMSI and ETW.

Acknowledgements. We thank our anonymous reviewers for their comments. We also
thank Federico Palmaro and Franco Gioia for their feedback on our design. This work
was supported by the Italian MUR National Recovery and Resilience Plan funded by
the European Union - NextGenerationEU through project SERICS (PE00000014).

References
1. Apostolopoulos, T., Katos, V., Choo, K.K.R., Patsakis, C.: Resurrecting anti-

virtualization and anti-debugging: Unhooking your hooks. Future Generation Computer
Systems 116, 393–405 (2021)

2. Assaiante, C., D’Elia, D.C., Di Luna, G.A., Querzoni, L.: Where did my variable go?
poking holes in incomplete debug information. p. 935–947. ASPLOS 2023, ACM (2023)

3. Balakrishnan, G., Reps, T.: Analyzing memory accesses in x86 executables. In:
Duesterwald, E. (ed.) Compiler Construction. pp. 5–23. Springer (2004)

4. Bhattacharyya, A., Tesic, U., Payer, M.: Midas: Systematic kernel TOCTTOU
protection. In: 31st USENIX Security Symposium (USENIX Security 22). pp. 107–124.
USENIX Association (Aug 2022)

5. Capstone Engine: Capstone, The Ultimate Disassembler, https://www.capstone-
engine.org/

6. Chaitin, G.J.: Register allocation & spilling via graph coloring. In: Proc. of the 1982
SIGPLAN Symposium on Compiler Construction. p. 98–105. SIGPLAN ’82, ACM (1982)

7. Chen, R.: Why do Windows functions all begin with a pointless MOV EDI, EDI
instruction?, https://devblogs.microsoft.com/oldnewthing/20221109-00/?p=107373

8. Cheng, B., Ming, J., Fu, J., Peng, G., Chen, T., Zhang, X., Marion, J.Y.: Towards
paving the way for large-scale windows malware analysis: Generic binary unpacking
with orders-of-magnitude performance boost. p. 395–411. CCS ’18, ACM (2018)

9. D’Elia, D.C., Coppa, E., Nicchi, S., Palmaro, F., Cavallaro, L.: Sok: Using dynamic
binary instrumentation for security (and how you may get caught red handed). p.
15–27. Asia CCS ’19, ACM (2019)

10. Di Luna, G.A., Italiano, D., Massarelli, L., Österlund, S., Giuffrida, C., Querzoni,
L.: Who’s debugging the debuggers? exposing debug information bugs in optimized
binaries. p. 1034–1045. ASPLOS ’21, ACM (2021)

11. D’Elia, D.C., Coppa, E., Palmaro, F., Cavallaro, L.: On the dissection of evasive malware.
IEEE Transactions on Information Forensics and Security 15, 2750–2765 (2020)

12. D’Elia, D.C., Nicchi, S., Mariani, M., Marini, M., Palmaro, F.: Designing robust API
monitoring solutions. IEEE Transactions on Dependable and Secure Computing 20(1),
392–406 (2023)

13. Guilfanov, I.: IDA Pro, https://hex-rays.com/ida-pro
14. Guo, R., Zeng, J.: Phantom attack: Evading system call monitoring (2021),

https://www.youtube.com/watch?v=yaAdM8pWKG8, DEFCON 29
15. Guo, R., Zeng, J.: Trace me if you can: Bypassing linux syscall tracing (2022),

https://www.youtube.com/watch?v=yFl_ScKA300, DEFCON 30
16. Hasherezade: Tiny tracer, https://github.com/hasherezade/tiny_tracer
17. Iwamoto, K., Wasaki, K.: Malware classification based on extracted API sequences

using static analysis. In: Proc. of the 8th Asian Internet Engineering Conference. p.
31–38. AINTEC ’12, ACM (2012)

18. Kalendarov, I.: Blindside: A New Technique for EDR Evasion with Hardware
Breakpoints, https://cymulate.com/blog/blindside-a-new-technique-for-edr-evasion-
with-hardware-breakpoints

20 C. Assaiante et al.

19. Kawakoya, Y., Iwamura, M., Shioji, E., Hariu, T.: API chaser: Anti-analysis resistant
malware analyzer. pp. 123–143. RAID ’13, Springer (2013)

20. Kim, S.H., Zeng, D., Sun, C., Tan, G.: BinPointer: Towards precise, sound, and scalable
binary-level pointer analysis. p. 169–180. CC 2022, ACM (2022)

21. Lee, J.h., Han, J., Lee, M.w., Choi, J.m., Baek, H., Lee, S.J.: A study on API wrapping
in themida and unpacking technique. Journal of the Korea Institute of Information
Security & Cryptology 27(1), 67–77 (02 2017)

22. Lengyel, T.K., Maresca, S., Payne, B.D., Webster, G.D., Vogl, S., Kiayias, A.: Scalability,
fidelity and stealth in the drakvuf dynamic malware analysis system. p. 386–395.
ACSAC ’14, ACM (2014)

23. Linn, C., Debray, S., Andrews, G.: Stack analysis of x86 executables. Tech. rep.,
Department of Computer Science, University of Arizona (1212)

24. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi,
V.J., Hazelwood, K.: Pin: Building customized program analysis tools with dynamic
instrumentation. p. 190–200. PLDI ’05, ACM (2005)

25. Microsoft: API stack usage, https://learn.microsoft.com/en-us/cpp/build/stack-
usage?view=msvc-170

26. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kaufmann
Publishers Inc. (1998)

27. Nektra: Spystudio, https://www.nektra.com/products/spystudio-api-monitor/
28. Rohitab: API monitor, http://www.rohitab.com/apimonitor
29. Roundy, K.A., Miller, B.P.: Binary-code obfuscations in prevalent packer tools. ACM

Comput. Surv. 46(1) (Jul 2013)
30. Schwarz, M., Gruss, D., Lipp, M., Maurice, C., Schuster, T., Fogh, A., Mangard, S.:

Automated detection, exploitation, and elimination of double-fetch bugs using modern
cpu features. p. 587–600. ASIACCS ’18, ACM (2018)

31. Shudrak, M., Bruening, D., Testa, J.: Drltrace, https://github.com/mxmssh/drltrace
32. Wang, H., Xie, X., Lin, S.W., Lin, Y., Li, Y., Qin, S., Liu, Y., Liu, T.: Locating vulnerabil-

ities in binaries via memory layout recovering. p. 718–728. ESEC/FSE 2019, ACM (2019)
33. Wei, J., Pu, C.: TOCTOU vulnerabilities in UNIX-Style file systems: An anatomical

study. In: 4th USENIX Conference on File and Storage Technologies (FAST 05).
USENIX Association (Dec 2005)

A Appendix
Figure 6 shows average stolen code depths and their median absolute deviation
computed for all APIs in a DLL, excluding cases of trivial redirections, as opposed
to the analysis of Figure 2 that features only TOCTTOU-vulnerable APIs.

 0

 5

 10

 15

 20

 25

 30

 35

advapi32.dll

crypt32.dll

kernel32.dll

kernelbase.dll

ole32.dll

oleaut32.dll

shell32.dll

user32.dll

w
ininet.dll

w
s2_32.dll

Windows 10 (64bit)
Windows 7 (32bit)
Windows 7 (32bit)

#
 i
n
s
tr

u
c
ti
o
n
s

Fig. 6: Stolen code depth with mean absolute deviation bars.

